Manipal Institute of Regenerative Medicine, Bengaluru

M. Phil. Stem Cell Technology and Regenerative Biology

Syllabus (2018 onwards)

REGULATIONS

These regulations shall come into effect from January 2018 onwards. These regulations are subject to modifications from time to time by authorities of Manipal Academy of Higher Education.

1. Minimum Qualification for Admission:

The candidates must have passed MSc in any branch of Life Sciences / MSc in Biotechnology / M. Pharm / MBBS / M.VSc / MDS / MD / MSc in Regenerative Medicine/ Clinical Embryology and other paramedical courses from a recognised University and a minimum of 50% marks in aggregate.

2. Duration of Program:

One year.

3. Attendance Requirement:

Each course of the semester will be treated as a separate unit to determine the attendance. Every student must have not less than 80% attendance in each unit to be eligible to appear for examination.

- 4. The M.Phil. Course shall comprise of 40 Credits divided into 2 parts :
 - (a) Part I Course Work (15 Credits).

Course 1- Research Methodology.

- Course 2 Clinical Application of Stem Cells/ Non Clinical Application of Stem Cells/ Intercellular communications in Stem Cell Niches/ Biomaterials and Tissue Engineering.
- (b) Part II Dissertation (25 Credits)

COURSE STRUCTURE

M.Phil. Stem Cell Technology and Regenerative Biology PART I: COURSE WORK (Total Credits=15)

(L= Lecture, T= Tutorial, P= Practical, C= Credit, IA= Internal assessment, UNI Exam= University Examination)

	COURS	E-1					
Code	Course Title		Hours Per Week		Maximum Marks		
		L	Р		IA	*UNI EXAM	TOTAL
RM 801	Theory Research Methodology	5		2	30	70	100
RM 803	Lab Research Methodology		9	3	40	60	100
	TOTAL			5			200
	COURS	E-2		•			
RM 802	Theory Clinical Application of Stem cells OR Non Clinical Application of Stem Cells OR Intercellular communications in Stem Cell Niche OR Biomaterials and Tissue Engineering	7		7	30	70	100
RM 804	Lab Clinical Application of Stem cells		9	3	40	60	100
	TOTAL			10			200

*Minimum marks for all University Examinations for a pass credit = 50%

PART II: DISSERTATION (Total Credits=25)

Codo	Course Title	Hours per week (Lectures per week)			C	Maximum Marks			
Code		L	Т	Р	C	M.Phil. Thesis Evaluation	Thesis Presentation/ Viva Voce	TOTAL	
RM 805	Dissertation Project	-		-	25	300	100	400	

*Minimum marks for all University Examinations for a pass credit = 50%

SYLLABUS OF COURSE WORK

M.Phil. Stem Cell Technology and Regenerative Biology

Course 1: CLINICAL APPLICATIONS OF STEM CELLS Theory: 20 Lectures*

CI	LINICAL APPLICATIONS OF STEM CELLS
LECTURE 1 Di	isorders of endocrine system
LECTURE 2 Di	isorders of endocrine system
LECTURE 3 Ge	eneration of Gastro intestinal cells from stem cells
LECTURE 4 Ge	eneration of Gastro intestinal cells from stem cells
LECTURE 5 En	ndodermal organoid culture system
LECTURE 6 Mo	lodelling endodermal diseases using stem cells
LECTURE 7 Tre	reatment of Parkinson's disease, cerebral stroke, multiple sclerosis and ALS
wi	ith stem cells
LECTURE 8 Tr	reatment of Parkinson's disease, cerebral stroke, multiple sclerosis and ALS
wi	ith stem cells
LECTURE 9 Tr	reatment of Parkinson's disease, cerebral stroke, multiple sclerosis and ALS
wi	ith stem cells
LECTURE 10 Ste	tem cells for the treatment of motor neuron disease and spinal cord injury
LECTURE 11 Ste	tem cells for the treatment of motor neuron disease and spinal cord injury
LECTURE 12 Int	troduction to immunotherapy, activation and suppression.
Im	nmunotherapies
LECTURE 13 Tra	ransplantation immunity
LECTURE 14 Ap	pplication of MSCs as an immunomodulator during transplantation
LECTURE 15 Au	utoimmune disorder and application of stem cells
LECTURE 16 Ca	ancer immunotherapy
LECTURE 17 En	ngineering stem cells for immunotherapy
LECTURE 18 He	ematopoietic stem cells: concepts, definitions
LECTURE 19 Di	isorders of HSCs: Blood disorders, Anaemia, Genetic disorders, Leukaemia,
Mu	lultiple myeloma.
LECTURE 20 Di	ifferentiation of stem cells to hematopoietic cells

Practical: 3 Practicals*

Induction of type 2 diabetes in animal models with streptozotocin.

Isolation of pancreatic islets from normal and diabetic mice

Isolation of Neural stem cells (NSCs) from Sub ventricular zone (SVZ) of mouse brain and characterization by PCR and Immunofluorescence.

Course 2: RESEARCH METHODOLOGY

Theory 20 Lectures

Lecture no.	RESEARCH METHODOLOGY
Lecture 1	In situ RNA hybridization; Karyotyping, FISH. Genome Analysis: Microarrays; NGS; DNA methylation Studies; Chromatin immune-precipitation
Lecture 2	Bimolecular Interaction Studies: Protein-Protein- Yeast two hybrid system Protein DNA: DNA foot printing/ EMSA
Lecture 3	Spectroscopy: Principles and Methods of UV visible spectroscopy (Nano drop), Fluorescence spectroscopy, Mass Spectrophotometry, Circular dichroism, Nuclear magnetic resonance
Lecture 4	 Flow Cytometry: Principles, methods and applications of flow Cytometry, Fluorescence activated Cell sorting, BrdU Incorporation, Immuno-phenotyping, Cells cycle analysis, Cell Sorting
Lectures 5	Cell Culture Techniques: Isolation of Primary Cultures;EmbryonicStemCellDerivation;Generation of IPSCs, Organoid Cultures, Hybridoma
Lectures 6	Genetic Manipulation: Cloning (Nuclear Transfer; SCNT). Generation of Cell Lines (Transformation of primary cells to cell lines, Report Constructs; Selectable Markers).
Lectures 7	Gene Editing (Homologous Recombination –Cre/loxP system; CRISPR Cas9 system, RNA Interference using siRNA, miRNA, Selection of Recombinants).
Lecture 8	Introduction and basic concepts: Definition – Biostatistics, Examples of applications of statistics in Biology, Variable – Qualitative & Quantitative: Nominal, Ordinal, Discrete, and Continuous
Lecture 9	Sampling: Definitions: Population Sample, Advantages of Sample Studies, Types of Sampling (Probability & Non Probability Sampling), Methods of Sampling (Procedure, merits, demerits and applications only- Simple random sampling, stratified random sampling, systematic sampling, cluster sampling), Sampling error
Lecture 10	Descriptive statistics: Averages (Calculations, merits, demerits and uses), Arithmetic mean, Geometric mean, Median and Mode; Measures of dispersion (Computation, merits, demerits and application). Range, Inter Quartile Range, Variance, Standard deviation, Coefficient of Variation; Graphical Presentation of data (Pie chart, Bar diagram, Line graph, Histogram, Frequency polygon, Frequency Curve)

Lecture 11	Descriptive statistics: Averages (Calculations, merits, demerits
	and uses), Arithmetic mean, Geometric mean,
	Median and Mode; Measures of dispersion (Computation,
	merits, demerits and application). Range, Inter Quartile Range,
	Variance, Standard deviation, Coefficient of Variation;
	Graphical Presentation of data (Pie chart, Bar diagram, Line
	graph, Histogram, Frequency polygon, Frequency Curve)
Lecture 12	Probability and Probability distributions: Sample space, Events.
	Definition of probability
	(Classical, Relative Frequency, Axiomatic). Properties of
	probability (only statements),
	Conditional probability, Addition theorem, Multiplication
	theorem and Baye's theorem (only statements).
	Discrete probability distributions - Binomial and Poisson
	(concept and list of applications).
	Continuous probability distribution - Normal distribution
	(concept, properties and applications).
Lecture 13	Concepts of tests of significance: Null hypothesis, Alternate
	hypothesis. Type I error, Type II error.
	Level of significance. P-value. Power of the test. Tests of
	significance (Chi-square test, Z test (for proportions),
	Student's t-test (paired and unpaired), One-way analysis of
	variance (only introduction)). Confidence interval for mean and
	proportion.
Lecture 14	Correlation and regression: Dependent Variable, Independent
Lecture 14	
	Variable. Definition and properties of simple
	Pearson's correlation co-efficient. Test of significance of
	correlation co-efficient. Concept of simple linear regression.
	Scatter graph with regression line
Lecture 15	Sample size determination: Importance of sample size
	determination in Biological Sciences Research. Sample Size
	for -estimating mean, comparing two means, estimation
	proportion, comparing two proportions.
Lecture 16	Fundamental Ethical Principles
Lecture 17	Laboratory-based Human Embryonic Stem Cell Research,
Lecture 17	
	Embryo Research, and Related Research Activities:
	Review Processes, Procurement of Biomaterials, Derivation,
	Banking and Distribution of Human Pluripotent Stem Cell
	Lines and Mechanisms for Enforcement
Lecture 18	Clinical Translation of Stem Cells: Cell Processing and
	Manufacture, Preclinical Studies, Clinical Research,
	Stem Cell-based Medical Innovation and Clinical Application
Lecture 19	Clinical Translation of Stem Cells: Cell Processing and
	Manufacture, Preclinical Studies, Clinical Research, Stem
	Cell-based Medical Innovation and Clinical Application
Lecture 20	Communications and Standards in Stem Cell Research

Practical: 7 Practical

Cell Viability Assay (MTT)

Culture & Characterization of Mesenchymal Stromal Cells

Culture & Characterization of Embryonic stem cells

Descriptive statistics

Probability and probability distributions

Assessment of homologous sequences using phylogenetic analysis

Protein databases and visualization